63 research outputs found

    Open Data for Global Multimodal Land Use Classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest

    Get PDF
    In this paper, we present the scientific outcomes of the 2017 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2017 Contest was aimed at addressing the problem of local climate zones classification based on a multitemporal and multimodal dataset, including image (Landsat 8 and Sentinel-2) and vector data (from OpenStreetMap). The competition, based on separate geographical locations for the training and testing of the proposed solution, aimed at models that were accurate (assessed by accuracy metrics on an undisclosed reference for the test cities), general (assessed by spreading the test cities across the globe), and computationally feasible (assessed by having a test phase of limited time). The techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and of mixed ideas and methodologies deriving from computer vision and machine learning but also deeply rooted in the specificities of remote sensing. In particular, rigorous atmospheric correction, the use of multidate images, and the use of ensemble methods fusing results obtained from different data sources/time instants made the difference

    Data science in economics: Comprehensive review of advanced machine learning and deep learning methods

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This paper provides a comprehensive state-of-the-art investigation of the recent advances in data science in emerging economic applications. The analysis is performed on the novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a broad and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, is used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which outperform other learning algorithms. It is further expected that the trends will converge toward the evolution of sophisticated hybrid deep learning models

    Reply to: Comments on “Particle Swarm Optimization with Fractional-Order Velocity”

    Get PDF
    We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ..

    Multisource and multitemporal data fusion in remote sensing:A comprehensive review of the state of the art

    Get PDF
    The recent, sharp increase in the availability of data captured by different sensors, combined with their considerable heterogeneity, poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary data sets, however, opens up the possibility of utilizing multimodal data sets in a joint manner to further improve the performance of the processing approaches with respect to applications at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several

    Airborne Object Detection Using Hyperspectral Imaging: Deep Learning Review

    Full text link
    © 2019, Springer Nature Switzerland AG. Hyperspectral images have been increasingly important in object detection applications especially in remote sensing scenarios. Machine learning algorithms have become emerging tools for hyperspectral image analysis. The high dimensionality of hyperspectral images and the availability of simulated spectral sample libraries make deep learning an appealing approach. This report reviews recent data processing and object detection methods in the area including hand-crafted and automated feature extraction based on deep learning neural networks. The accuracy performances were compared according to existing reports as well as our own experiments (i.e., re-implementing and testing on new datasets). CNN models provided reliable performance of over 97% detection accuracy across a large set of HSI collections. A wide range of data were used: a rural area (Indian Pines data), an urban area (Pavia University), a wetland region (Botswana), an industrial field (Kennedy Space Center), to a farm site (Salinas). Note that, the Botswana set was not reviewed in recent works, thus high accuracy selected methods were newly compared in this work. A plain CNN model was also found to be able to perform comparably to its more complex variants in target detection applications

    Spectral-spatial classification based on integrated segmentation

    No full text
    International audienceA new spectral-spatial method for the classification of hyperspectral images is introduced. The proposed approach is based on two segmentation methods, Fractional-Order Darwinian Particle Swarm Optimization and Mean Shift Segmentation and one clustering method, K-means. In parallel, the input data set is classified by Support Vector Machines (SVM). Furthermore, the result of the segmentation and clustering steps are combined with the result of SVM through majority voting within each object. The final classification map is made by using majority voting between three produced classification maps. Experimental results indicate that the proposed method can significantly improve SVM and other studied methods in terms of accuracies

    Effect of the training set configuration on Sentinel-2-based urban Local Climate Zone Classification

    Get PDF
    As any supervised classification procedure, also Local Climate Zone (LCZ) mapping requires reliable reference data. These are usually created manually and inevitably include label noise, caused by the complexity of the LCZ class scheme as well as variations in cultural and physical environmental factors. This study aims at evaluating the impact of the training set configuration, i.e. training sample number and imbalance, on the performance of Canonical Correlation Forests (CCFs) for a classification of the 11 urban LCZ classes. Experiments are carried out based on globally available Sentinel-2 imagery. Besides multi-spectral observations, different index measures extracted from the images as well as the Global Urban Footprint (GUF) and Open Street Map (OSM) layers are fed into the CCFs classifier. The results show that different LCZs favor different configurations in terms of training sample number and balance. Based on the findings, majority voting of different predictions from different configurations is proposed and performed. This way, a significant accuracy improvement can be achieved
    corecore